3x^2+1=9x^2+6x+1

Simple and best practice solution for 3x^2+1=9x^2+6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+1=9x^2+6x+1 equation:



3x^2+1=9x^2+6x+1
We move all terms to the left:
3x^2+1-(9x^2+6x+1)=0
We get rid of parentheses
3x^2-9x^2-6x-1+1=0
We add all the numbers together, and all the variables
-6x^2-6x=0
a = -6; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·(-6)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*-6}=\frac{0}{-12} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*-6}=\frac{12}{-12} =-1 $

See similar equations:

| 18-(x-7)=4x-4 | | 120c+160=5c+20 | | -7(n-7)=-3(1+n) | | -13+2=-52+17x | | 6(-7x+6)=498 | | 31d=620 | | 6x-40=4x+20 | | 4(2x-3)+2(9-x)-8=3(2x+7)-(3x+4) | | 5+2n=-(3-5n)-2n | | -7x-4+2x=-5x-6+2 | | -7-6x=7x-72 | | 2−2s=43​ s+1 | | 30y=28 | | -x+167=278 | | 80=10(u−82) | | 6-7x+6=498 | | 6(v-1)-7=-4(-6v+2)-8v | | 60-5y=40 | | -19+6p=-p+8(-p-8) | | 3m−4=11 | | 8(2d-3)=3(4d-7) | | 2x²+5x-58=0 | | 201=86-v | | 1/2(10x*7)=5x | | 3-3v=12 | | -6x+7=-89+6x | | -3+3x=5x-19 | | 90+7x+6+5x=180 | | 2x-12=4/5x | | 3x+7+x+1=180 | | 7(x-5)=8(x+3) | | -100=4(4n-5) |

Equations solver categories